A comparison of muscle stiffness and musculoarticular stiffness of the knee joint in young athletic males and females

Dan Wang a,b,c, Giuseppe De Vito a,c, Massimiliano Ditroilo d, Daniel T.P. Fong e, Eamonn Delahunt a,c

a School of Public Health, Physiotherapy and Population Science, University College Dublin, Health Sciences Centre, Belfield, Dublin 4, Ireland
b No. 2 Clinical Medicine School, Nanjing University of Chinese Medicine, Nanjing, Jiang Su Province, China
c Institute for Sport and Health, University College Dublin, Dublin, Ireland
d Department of Sport, Health & Exercise Science, Faculty of Science & Engineering, University of Hull, England, United Kingdom
e School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom

ARTICLE INFO

Article history:
Received 17 October 2014
Received in revised form 11 February 2015
Accepted 13 March 2015

Keywords:
Knee joint
Quadriceps muscle
Neuromuscular monitoring
Athletic injuries

ABSTRACT

The objective of this study was to investigate the gender-specific differences in peak torque (PT), muscle stiffness (MS) and musculoarticular stiffness (MAS) of the knee joints in a young active population. Twenty-two male and twenty-two female recreational athletes participated. PT of the knee joint extensor musculature was assessed on an isokinetic dynamometer, MS of the vastus lateralis (VL) muscle was measured in both relaxed and contracted conditions, and knee joint MAS was quantified using the free oscillation technique. Significant gender differences were observed for all dependent variables. Females demonstrated less normalized PT (mean difference (MD) = 0.4 N m/kg, p = 0.005, \(\eta^2 = 0.17 \)) in both genders with males demonstrating a significantly higher slope (p < 0.001, \(\eta^2 = 0.63 \)) and MAS (MD = 122.1 N/m, p = 0.001, \(\eta^2 = 0.23 \)) than males. MAS increased linearly with the external load in both genders with males demonstrating a significantly higher slope (p = 0.019) than females. The observed differences outlined above may contribute to the higher knee joint injury incidence and prevalence in females when compared to males.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Epidemiological research has reported that female athletes have an increased risk of lower limb musculoskeletal sports related injuries when compared to their male counterparts (Jones et al., 1993; Messina et al., 1999). This observation is particularly relevant in relation to anterior cruciate ligament (ACL) injuries and patellofemoral pain (PFP). Female soccer players have been reported to have a 2–3 times higher risk of ACL injuries when compared to males (Walden et al., 2011); this is also seen in other high velocity, intermittent sports such as basketball and volleyball (Hewett, 2000). PFP is a prevalent lower limb musculoskeletal disorder, observed in young, physically active female athletes (Heintjes et al., 2003; Natri et al., 1998), and is associated with reduced participation in field and court based sports. Furthermore, it may precipitate the onset of patellofemoral osteoarthritis (Utting et al., 2005), as well as being potentially linked to non-contact ACL injury risk (Myer et al., 2014).

Factors that are thought to contribute to gender differences in the incidence and prevalence of knee joint injuries include; differences in the mechanical properties of the knee joint ligaments, knee joint kinematics during landing, cutting and pivoting, as well as skeletal alignment (Bonci, 1999; Harner et al., 1994; Rose and Fogarty, 1999). During sport related activities, joint loads increase and knee joint stability is dependent upon activation of the dynamic muscular constraint system, aimed at protecting joints against injury. Kim and Hong (2011) summarized from previous studies that co-contraction of agonist and antagonist muscles is important for joint stabilization during dynamic movement; the amount of co-contraction could significantly influence the resultant torque at the knee joint. Billiot et al. indicated that agonist–antagonist muscles have a common descending drive control (Billiot et al., 2014). Imbalance of quadriceps and hamstring strength (hamstring/quadriceps ratio < 0.6) has been reported as a contributing factor to non-contact knee injuries (Kim and Hong, 2011). Furthermore, neuromuscular imbalance of decreased hamstring activation relative to quadriceps activation is also well documented as a risk factor for ACL injury (Alentorn-Geli et al., 2009). The role of hamstring muscles during landing or cutting is to provide a counterbalancing force to resist the relatively higher
quadriceps force; higher quadriceps muscle activity and altered co-activation patterns in females have been inferred to change the knee joint loads and thereby increase their risk for knee injury (Krishnan and Williams, 2009). In this context, strength is only one component of injury mechanism; neuromuscular function is actually the primary contributor to the higher risk of non-contact lower limbs injuries in females when compared to males. In contrast, stiffness is a more comprehensive variable which represents the shock absorption characteristics of an individual muscle–tendon unit, joint, or system (Watsford et al., 2010). A recent consensus paper (Shultz et al., 2012) advocated that further insight into the dynamic-restraint systems of the knee joint beyond absolute strength is required to understand more comprehensively the potential mechanisms associated with the observed gender disparity in knee joint injuries among athletes, with the authors recommending that further research regarding knee joint stiffness is warranted.

Musculoskeletal stiffness (MAS), assessed with the free-oscillation technique, is a comprehensive measurement incorporating the stiffness of the muscle–tendon unit, surrounding articular surfaces, ligaments, and skin. The same technique can be applied to a single muscle using a specific device, thus obtaining a more localized measurement of muscle stiffness (MS) than MAS evaluation. It has been advocated that some level of stiffness is beneficial to enhance athletic performance, however too much or too little stiffness may increase the risk of injury (Butler et al., 2003). Further, whilst an elevated level of stiffness appears to be beneficial for rapid stretch–shortening cycle (SSC) movements, during relatively slow SSC movements a more compliant structure can better utilize the eccentric pre-stretch and cushion the impact (Pruyn et al., 2014). That’s why MS and MAS have the potential to play crucial roles in neuromuscular control of joint stability, injury prevention and athletic performance (Ditroilo et al., 2012, 2011b).

To the present authors knowledge, no studies to date have concurrently measured and compared knee joint MAS and quadriceps MS in male and female recreational athletes. Vastus lateralis (VL) was utilized as representative of the quadriceps muscle (Cafarelli, 1977). Thus, the aim of the present study was to concurrently investigate MAS of the knee joint and MS of VL in young male and female athletes. It was hypothesized that females would be characterized by lower knee joint MAS and MS of the VL when compared to males, which could help to explain an important mechanism linked to gender disparities in knee joint musculoskeletal injuries.

2. Methods

2.1. Participants

Twenty-two male (age = 26.7 ± 2.6 years, stature = 1.77 ± 0.07 m, body mass = 72.6 ± 9.1 kg, BMI = 23.1 ± 2.4 kg/m²) and twenty-two female recreational athletes (age = 23.8 ± 4.1 years, stature = 1.65 ± 0.08 m, body mass = 63.0 ± 12.0 kg, BMI = 23.1 ± 3.5 kg/m²) volunteered to participate. The study protocol was approved by the University Human Research Ethics Committee, and all participants signed consent forms. The specific inclusion criteria were: (1) recreational athletes who participated in organized sports; (2) aged: 18–35 years; (3) BMI ≤ 25 (if a participant’s BMI was >25, body fat ≤ 25% [males] or ≤ 35% [females] (assessed via skinfold thickness) were deemed acceptable (Ho-Pham et al., 2011); (4) no recent significant soft-tissue injury to the lower limbs in the last 6 months; (5) no reported medical condition that could influence performance. Furthermore, participants were also screened using a medical history questionnaire (Ditroilo et al., 2011a) and the Physical Activity Readiness Questionnaire form.

2.2. Study design

Each participant was required to visit the laboratory on one occasion and undergo the following evaluations: (1) peak torque (PT) testing of their right knee joint extensor musculature; (2) relaxed MS testing of their right VL; (3) contracted MS testing of their right VL; (4) contracted MAS testing of their right knee joint.

2.3. Peak torque (PT)

Each participant underwent PT testing of their right knee joint extensor musculature on a dynamometer (Bodymax Fitness, Clydebank, UK). The participant was seated on the dynamometer with their; hip flexed at 105° and their right knee flexed at 80° (where full extension represents 0°) (Ditroilo et al., 2012), with the lateral femoral condyle aligned with the axis of the dynamometer. The force transmission point was a bar that was positioned anteriorly to the participant’s lateral malleolus. The machine was equipped with a load cell (Leane International, Parma, Italy, measurement range: 0–500 kg, output: 2.00 mV/V) applied in series with the plane of force application. The load cell was secured to the leg-extension machine with a chain. This prevented movements of the bar and therefore allowed an isometric contraction when the participant attempted to extend their leg. Participants were stabilized with straps at the pelvis to avoid movements toward hip extension during the test. Furthermore, to minimize any contribution from the upper body, participants were required to cross their hands across their body throughout. After familiarization with the procedures, participants were instructed to produce a maximum voluntary isometric contraction (MVIC) of their knee joint extensor musculature, as quickly as possible for approximately 3 s. Each participant was required to perform three MVICs, with the highest value recorded being used to determine the load with which MAS was assessed. During performance of each MVIC, strong verbal encouragement and visual target stimulation were provided to motivate maximal contraction. The force signal was sampled at 1000 Hz and stored on a PC using a 16 bit A/D converter data acquisition system (Biopac Systems, Inc. Goleta, CA, USA). Prior to data analysis, the signal was filtered using a 5-ms moving average. The force signal was then multiplied by the individual lever arm length to convert it into torque (N m). The highest torque value was identified as PT, which was normalized to body mass of each individual (Pincivero et al., 2003) for further analysis.

2.4. Muscle stiffness (MS)

MS of the VL muscle was measured using a device incorporating a probe and an accelerometer (Myometer, Myoton-3, Muomeetria AS, Tallinn, Estonia) sampled at 3200 Hz. During MS recordings, the subjects were seated in the same position used for MVIC measurements. The probe was manually positioned perpendicular to the muscle belly with the recording site being 2/3 the distance along a line measured from the anterior superior iliac spine to the midpoint on the lateral side of the patella. The probe was gently lowered onto the muscle belly of the VL with a resultant automatic mechanical impact being delivered to the muscle (duration of 15 ms, a force of 0.3–0.4 N and a local deformation in the order of a few millimeters) (Ditroilo et al., 2012). The damped natural oscillations were recorded by the accelerometer within the probe giving an instantaneous digital output of the MS. Five consecutive measurements were taken during relaxed (no external load) and contacted (external load = 30% MVIC) (Fig. 1) conditions. The average of the five measurements was used for later analysis.
2.5. Musculo-articular stiffness (MAS)

MAS of each participant’s right knee joint was measured using a technique previously published by Ditroilo et al., 2012 (Fig. 2). Participants sat in the same position used previously for MVIC assessments. To quantify submaximal MAS stiffness, the participants were required to support a load corresponding to 30% of MVIC on the anterior distal portion of their lower leg. An external perturbation of 100–150 N was applied to the bar by the investigator and the ensuing oscillations were recorded by a uniaxial accelerometer (Crossbow, Milpitsa, CA, USA) attached to the distal end of the lever arm of the leg-extension dynamometer. Accelerometer data were sampled at 1000 Hz and recorded on a personal computer using a 16-bit A/D converter. A Butterworth low-pass filter (third order) with a cutoff frequency of 4 Hz was used to filter the signal. Each participant completed five MAS trials separated by a 1-min rest period, with the average of the middle three trials being used for analysis. Considering the positive relationship between the active joint stiffness and the applied load, stiffness gradient, defined as the ratio of the two parameters, was subsequently calculated afterwards and utilized as a dependent variable in the statistical analysis (Gardner-Morse et al., 1995).

2.6. Statistical analysis

Independent samples t-tests (two tailed) were undertaken to investigate differences between males and females on the following four dependent variables: (1) PT; (2) relaxed MS; (3) contracted MS; (4) MAS. Statistical analyses were conducted in IBM SPSS Statistics 20 (IBM Ireland Ltd, Dublin, Ireland). To account for the number of analyses undertaken, statistical significance was set a priori at $p < 0.0125$ (Bonferroni adjustment). Furthermore, a one-way-between-groups analysis of covariance (ANCOVA) was conducted to investigate differences in stiffness gradient across genders with the external load as the covariate; the level of significance was set at $p < 0.05$.

3. Results

A significant difference was observed between males and females in; normalized PT (PT/body mass) (males 2.8 ± 0.4 N m/kg, females 2.4 ± 0.4 N m/kg (Fig. 3); $t(42) = 2.96$, $p = 0.005$), relaxed MS (males 364.4 ± 52.0 N/m, females 270.3 ± 33.3 N/m (Fig. 4); $t(42) = 6.90$, $p < .001$), contracted MS (males 495.1 ± 71.0 N/m, females 332.3 ± 85.4 N/m (Fig. 5); $t(42) = 6.9$, $p < .001$) and MAS (males 1450.1 ± 508.0 N/m, females 1028.0 ± 227.3 N/m (Fig. 6); $t(42) = 3.55$, $p < .001$).

The magnitude of the difference in means was also large for; normalized PT (mean difference (MD) = 2.3 N m/kg, 95% CI: 0.1–0.6, $\eta^2 = 0.17$), relaxed MS (MD = 94.2 N/m, 95% CI: 66.6–121.7 $\eta^2 = 0.53$), contracted MS (MD = 162.7 N/m, 95% CI: 114.9–210.5, $\eta^2 = 0.53$) and MAS (MD = 422.1 N/m, 95% CI: 179.5–664.8 $\eta^2 = 0.23$).

Preliminary checks were conducted to ensure that there was no violation of the assumptions of normality, linearity, homogeneity of variances and regression slopes, and reliable measurement of...
4. Discussion

The primary findings were that females have lower relaxed and contracted MS of the VL and were characterized by lower knee joint MAS which are potentially important characteristics which may contribute to the gender disparity in knee joint injury incidence and prevalence.

MS is influenced by geometry (physiological cross-sectional area, PCSA) (Foure et al., 2012) and hence muscle mass (muscle mass = PCSA × fiber length + ρ) (Narici et al., 1992), as well as intrinsic properties (actin-myosin cross-bridge, and protein titin) (Proske and Morgan, 1999). Therefore, gender differences in relaxed MS could be attributable to the fact that males have a larger PCSA, greater muscle mass and thereby more muscle fiber cross bridges (Blackburn et al., 2004) and titin than females. Gajdosik et al. (1990) for instance suggested that higher hamstring stiffness values in males were ascribed to greater muscle mass compared to their female counterparts. Blackburn et al. also postulated that greater thigh segment mass in males could be responsible for observed gender differences in passive knee flexor stiffness, furthermore, increased muscle mass in males implies more passive connective tissue, and hence a greater number of collagen fibers for lengthening resistance when compared to females, leading to increased passive stiffness (Blackburn et al., 2004). In addition, in contracted muscles, the amount of cross bridge formed should also be considered, as contracted MS has been found to be proportional to contractile forces in muscle (Needle et al., 2014). Previous research has shown that males are stronger than females (Wojtys et al., 2002a), a finding also confirmed by the present study, whereby males produced significantly higher normalized PT values compared to females (2.8 ± 0.4 N m/kg vs. 2.4 ± 0.4 N m/kg).

Males were also found to have greater MAS compared to females, which is consistent with conclusions of a previous study (Blackburn et al., 2009). Sinkjaer et al. (1988) divided MAS into two parts: the intrinsic component (deformation and breakdown of actin-myosin filament cross-bridges) and the reflexive component (occurs after the establishment of intrinsic portions during rapid muscle stretches). The intrinsic component increases linearly with background torque (pre-activation) (Mrachacz-Kersting and Sinkjaer, 2003) which reflects the external stretch on quadriceps; whilst the reflexive component is integrated by the central nervous system, and accounts for approximately 50% of the total stiffness (Hinsey, 2011). Muscle contraction plays an essential role in joint stiffness (Needle et al., 2014), leading to a 2–4 times increase in knee joint stability (Markolf et al., 1976). Furthermore, studies have reported that active joint stiffness is proportional to the force generated by muscles (Morgan, 1977). Thus, factors related to muscle force production, such as geometric mechanisms (Granata et al., 2002b), cross-bridge mechanics and material qualities (Hinsey, 2011) are promising explanations for the gender differences in joint stiffness found in the current investigation.

In addition to the aforementioned mechanisms, knee joint stiffness properties can also be influenced by hormones, specifically free testosterone (FT) (Bell et al., 2012, Granata et al., 2002b). An early study showed that when compared to females, male adults possess approximately 7–8 times more FT (Southern et al., 1965). It has been observed that an inverse relationship exists between FT and time to 50% peak torque; with shorter time to 50% PT being more advantageous to overall joint stability (Bell et al., 2012; Blackburn et al., 2009). Bell et al., 2012, have reported that a negative relationship exists between estrogen and MAS, offering some explanation for the lower MAS observed in females. We hypothesize that this is the case for the present study although no associated experimental measurements were carried out.

Stiffness gradient is an essential tool to describe active stiffness characteristics. The results of the current study demonstrated a significantly higher stiffness gradient in males in comparison to females, indicating that when an applied moment increases, joint stiffness subsequently increases, and males manifest a higher degree of increased stiffness. Therefore, it is reasonable to assume that males are characterized by greater ability to resist external loads which has implications for injury risk in females. The observed difference in stiffness gradient between males and females is also supported by the findings of Granata et al., 2002b which reported that stiffness increased with the external load,
and there was a significant difference in slope of linear regressions between stiffness and applied load with females demonstrating a reduced regression slope.

Joint stiffness parameters are integrated by the CNS internally and exhibit mechanical characteristics externally. As a consequence, it is an important variable capable of representing joint stability and muscle performance. A higher degree of stiffness may provide more resistance to external load during functional performance and hence protect joints from musculoskeletal injury (Granata et al., 2002a). A decrease in joint stiffness or MS reduces a structure's capacity to resist external applied loads, and hence the gender differences in stiffness observed in the present study could help explain the higher risk of lower-limb injuries in females. It could also point out one possible solution for preventing injuries in females and males. Training; such as weight (Kubo et al., 2007) and plyometric training (Spurrs et al., 2003) have all been suggested to be beneficial for stiffness augmentation. In the future, it is important to investigate what kind of training is best for stiffness enhancement.

Limitations of this study include; not measuring the participants' testosterone and estrogen levels, and also not controlling females' menstrual cycle due to time and financial limits. The effect of menstrual cycle hormone fluctuations on stiffness properties and injury occurrence is still controversial. The study of Eilley et al. (2007) indicated significant effect of estrogen levels on musculoskeletal stiffness at the time of ovulation when compared to the menstrual and follicular phase; and more acute ACL tears were reported in females during mid-cycle by Wojtys et al. (2002b). However, Bryant et al. (2011) attested no significant leg stiffness difference between non-MOCP (monophasic oral contraceptive pill) and MOCP users.

5. Conclusions

Gender differences exist in the knee joint stiffness properties of young active populations. Females exhibit a lower level of MS and MAS when compared to males. The mechanism explaining this difference is still unknown, but neuromuscular control and muscle tissue differences may affect MS and MAS. This study's results may provide some interpretation as to why females incur more knee injuries than their male counterparts. Investigation of optimal training programmes for the augmentation of MS and MAS should be of interest in future.

Acknowledgement

Dan Wang was supported by a research studentship from the China Scholarship Council (CSC).

References

Miss Dan Wang achieved her bachelor degree in Traditional Chinese Medicine (Orthopaedics oriented) in 2010 from Chengdu Sport University and her master degree in sports medicine and health science in 2011 from The Chinese University of Hong Kong. Then she worked in Nanjing University of Chinese Medicine as a teacher and a Traditional Chinese Medicine doctor during the academic year of 2011–2012. From September 2012, Dan continued her studies in University College Dublin for her PhD in sports medicine. Her research interest is sports biomechanics and injury prevention.

Professor Giuseppe De Vito was born in 1958. He received his degree in medicine in 1986, specialised in Sports Medicine in 1989 and finally in 1994 completed his PhD in Exercise physiology. All the 3 courses were performed at the University La Sapienza of Rome Italy. From 1994 to 1996 he served as physician/physiologist of the Italian Olympic sailing team. In 1996 he moved to the University of Strathclyde in Glasgow (UK) where he worked for almost 9 years before returning to Italy as Associate Professor in Human and Exercise Physiology at the University of “Foro Italico” in Rome. He is currently Professor of Performance Science and Head of the School of Public Health, Physiotherapy and Sport Science at the University College of Dublin (Ireland). His primary area of teaching is human physiology and exercise physiology with a special attention to ageing. His research interests involve mainly two areas: muscle function and ageing and autonomic cardiovascular control in health and disease. He is ordinary member of both British and Italian Physiological societies and of the European college of Sport Science. He is member of the editorial board of the Journal of Electromyography and Kinesiology and Associate editor of the Journal of Aging and Physical activity. He also serves as a manuscript reviewer for several scientific journals.

Massimiliano Ditroilo is a lecturer in Sport and Exercise Biomechanics at the University of Hull (UK). He received his PhD in Health and Performance Science from University College Dublin (Ireland) in 2012 conducting research on musculo-articular stiffness and relationships with sport performance and ageing. Other research interests include neuro-mechanical analysis of cycling. He previously received a B.A. in Physical Education (1992) and a B.Sc. in Biological Sciences (1999) at Urbino University (Italy) then a M.Sc. in Methods of training (2002) at Tor Vergata University (Rome, Italy). He has been invited reviewer for several scientific journals.

Daniel Fong is currently a Senior Lecturer in Rehabilitation Science in the National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, The United Kingdom. His research area is on orthopaedics sport medicine and biomechanics, with a focus on ankle and knee joint ligamentous injury mechanism and prevention. To dated, he has published 45 articles in journal in orthopaedics, sport medicine, biomechanics and biomedical engineering areas.

Eamonn Delahun was born in 1961 and graduated with a 1st Class Honours Degree from the UCD School of Physiotherapy in 2003 placing first in his class. Upon graduation Eamonn was the recipient of a prestigious Irish Research Council for Science Engineering and Technology (IRCSET) post-graduate research scholarship. He was awarded his PhD from the UCD School of Physiotherapy and Performance Science in 2006. Eamonn has been the recipient of numerous research bursaries for his research on chronic ankle instability and has published on this topic in some of the leading sports medicine/science journals. He currently works as a Senior Lecturer in the UCD School of Public Health, Physiotherapy and Performance Science Degree programme. Eamonn also has extensive clinical experience having previously worked as a Chartered Physiotherapist in ExWell Medical. Eamonn also currently works as the Academic Mentor to the UCD Ad Astra Elite Athlete Scholar Strand.